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Abstract. We calculate the hea capacity of electrons as a function of the elecwn density and 
tempramre in two-direction double-barrier resonant-tunnelling structures. The strength of the 
barrier potential increases in one direetion, so that the system becomes W ;  the heat capacity 
as a function of the elecwon density ~ o e s  to a steplike slwpe, which is similar to the one in 
the DOS. From ZD to ID, the heat opacity reflects the pealrs in the ws with increasing electron 
densify, and becomes a sawtooth-like shape in ID. However, an asymmetric peak in the DOS 
makes two peaks in the heat capacity because the available DOS in thermal excitations becomes 
smaller as the chemical potential approaches the peak in the DOS. The heat capacity shows a 
linear dependence on the temperature in 30 and lo, but not in LD even at low temperatures. It 
exhibits a f i  dependence when the chemical potential is located near a pole in the DOS. 

With the development of nanoscale fabrication techniques there has been growing interest in 
low-dimensional structures, such as quantum wells, quantum wires and quantum dots [l]. 
A quantum-well structure consists of two heterojunctions with different energy gaps; it 
freezes the motion of electrons perpendicular to the heterojunction interface and electrons 
are confined within it. In this structure the electronic density of states is characterized by 
a staircasetype shape. The confinement of one more direction confines the electrons to 
move only along the remaining direction; this is called a quantum wire, and the density 
of states has a sawtooth-type shape as a function of energy. In general, the dimension of 
the quantum structures is designated by its density of states (DOS). The intermediate DOS, 
such as that in between two and three dimensions (3D) or one and two dimensions (7x1). 
was studied using the two-direction double-bartier resonant-tunnelling structure [2,3]. It is 
known that crossovers of the DOS occur as the strength of the confining potential increases. 

The physical quantities related to the DOS are interesting in quantum structures. One 
of the thermal equilibrium properties, the heat capacity, is being extensively studied both 
experimentally and theoretically because it strongly depends upon details of the electronic 
structure [ G I .  In this paper, we study the heat capacity for various confining potentials 
in the two-direction doublebarrier resonant-tunnelling structure and show the behaviour of 
the heat capacity in intermediate dimensions as a function of the electron density. 

For the calculation of heat capacities we use the local Dos of the quantum-well region in 
two-direction double-barrier resonant-tunnelling structures. In such structures the local DOS 
in the quantum-well region changes from 3D to ID behaviour by adjusting the strength of 
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the barrier potential. The crossovers of the DOS can be derived by the following potential: 

S J Lee et a1 

V(Y, Z) = V,[S(y + b) t J(Y - b)J + VI[~(Z +a)  + J(z - a ) ]  (1) 

where the confining barriers are located at f a  in the z direction and 2cb in the y direction. 
The strength of the barrier potential is approximately related to the real potential parameter 
by 

V; = d;AX i = 0 , 1  (2) 

where d; is the width of the barrier and A& is the conduction band offset between two 
materials forming heterojunctions. 

The DOS in the quantum-well region is calculated by the effective mass Hamiltonian 

h2 
2m* ff = -- v’ +v(y, z), (3) 

A method of solving the above equation and the results were discussed in [2,3]. The cross 
sectional DOS in the two-direction double-barrier resonant-tunnelling structure is given by 

where 

where q2 = 2m*e/h2, UI = 2m*VlbJh2 and U, = 2m’Vob/h2. Here the DOS is calculated 
in a box with the dimensions I x  x 2a x 2a, where 1, is the length of sample in the x direction 
and & is taken to be the same as U .  Figure 1 shows the calculated DOS for various values 
of U. and U,. For U1 = 0, a square-root-type three-dimensional DOS changes continuously 
as U. increases, ultimately into the staircase pattern at U0 = 03 which represents the 2D 
structure. The variation of the ws is displayed in figure l(b), in which Uo varies from 
zero to infinity at a fixed U, = CO. In this case the Dos approaches a ID sawtooth shape as 
U0 --f M. 

The heat capacity at a temperature T is given by 
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J; 
Figure 1. The cmssover behaviour of the density of stales plotted as a function of energy. The 
deosity of states and energies are in units o f  2m'bl,Jnh2 and x2h2J8m'nz respectively. In (a), 
U0 = 0.3.10. 16, m far Ut = 0, while in (b) U0 = 0.2.12, m for U! = m. 

where Etot is the total energy of electrons and f(<) is the Fermi-Dirac distribution function. 
Here we consider only the heat capacity contributed by electrons. Other effects such as 
ohonons are neelected to test the crossover of the heat capacity. Through a simple argument - 
the above equation is simplified as 

C,  = ka(h - l ? l l o )  

where 

L is the chemical Doten . .  . . _  Here l2 reflects the 
increase in the to& energy by the transition of electrons near ;to the upper levels when the 
temperature is raised by a small amount. It is noted that the second term in (IO) is negative 
and represents the decrease of the total energy as the temperature increases, associated with 
the temperature dependence of the chemical potential. The chemical potential is uniquely 
determined by the number of electrons. If we define a dimensionless electron density R 
such as n = N a 3 / V ,  where N is the total number of electrons in a volume V = 4abl,, the 
chemical potential p is calculated through the relation 

This equation is solved numerically for any temperapire and dimensionless electron density. 
We study the variation of the heat capacity for various U0 and U1 as a function of electron 

density n.  Figure 2(a) shows the heat capacities calculated for U, = 0,3,  10,16, cc and 
U1 = 0. We find that the heat capacity changes from a saturated form to a staircase-like 
shape as U0 increases. As a whole, the electron-density dependence of the heat capacity is 
similar to the DOS which is a function of energy. It is known that in the 3D system the heat 
capacity is given by 
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Figure 2. The crossover behaviour of the heat capacity drawn as a function of dimcnsionless 
electron density. The heat capacities are in units of nbblx/4a2. U0 and 01 are the same as in 
figure 1. 

where CF is the Fermi energy, i.e. the chemical potential at T = 0. Since the Fermi energy 
is given by 6~ = (h2/2m*a2)(3n2n)2/3, the heat capacity in the 3D system is proportional 
to I I ' / ~ .  Our results at T = 4 K almost exhibit a n1l3 dependence for U0 = U ]  = 0. 

For U ,  = 0 the height of the DOS becomes smaller as U0 increases, as shown in 
figure I@), so that in the full range of energy, the heights of the DOS have the largest 
values at U0 = 0 and U ,  = 0. However, the calculated heat capacity shows behaviour 
deviating somewhat from the DOS; the heat capacity in the ZD system has larger values in 
some regions of n than in 3D. This results from the fact that, for a fixed electron density 
n, the chemical potential in the 3D system is different to that of the 2D system at the same 
temperature; in the 3D system the Fermi energy is given by EF = (24n/n)'/' in local units, 
Eo = n2h2/8m*a2, while in the 2D system EF = 16n/rr + 1, considering only the first 
subband. 

Figure 2(6) shows the crossover of the heat capacity for the cases U0 = 0,2, 1 2 , w ,  
with U] = DO as a function of n. It is found that the sawtooth-like DOS gives rise to a larger 
value for the heat capacity than the staircase-like DOS. Overall, the calculated heat capacities 
exhibit shapes similar to those of the DOS except for the split peaks in the 1D system. When 
the chemical potential passes through each pole of the sawtooth in the DOS, a set of double 
peaks is generated in the heat capacity. This behaviour is due to the asymmetry of peaks 
in the DOS. In this case, the smaller peak appears when the chemical potential is located at 
the lower side of a pole in the DOS. In contrast, the larger peak appears when the chemical 
potential is located at the upper side of a pole in the DOS. Since the magnitude of the heat 
capacity is directly related to the thermal excitations of electrons, it is required for a large 
value to have abundant available states of both the empty upper levels and the filled levels 
lower than f i  within the range of several ksT from p. As f i  approaches a pole in the DOS, 
the heat capacity increases due to the increase of empty upper levels and then decreases 
when f i  lies very near a pole due to the decrease of filled lower levels; it then again starts 
to increase when f i  passes a pole due to the increase of filled lower levels. Thus, the heat 
capacity in the ID system exhibits a sawtooth with sets of double peaks. For the ID heat 
capacity. the heights of sawtooth-like peaks near n = 0 and n = 0.5 are rather smaller than 
the others, as shown in figure 2. This is due to the fact that the levels responsible for these 
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peaks have different degeneracies from the others. Since the energy levels for the banier 
height U, = U, = 00 are given by 

(14) 
h z e  r2h2 m 
2m* 8m* (a2 Lz) E(k,, m, I )  = - + - - + - m,I= 1,2 ,3 ,4  ,... 

they are doubly degenerate unless I = m in the case of a = b.  
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The sawtooth-like DOS in the ID structure exhibits a non-linear temperature dependence 
of the heat capacity. In figure 3, the heat capacities for the I D  to 3D electrons are plotted 
as a function of temperature for n = 0.75. In the 3D and 2D structures they increase 
linearly with temperature, as expected from the Sommerfeld expansion for a smooth DOS, 
cy = 7 r 2 ? ~ p ( 6 ~ ) T / 3 ,  In the ID structure, however, the heat capacity shows a non-linear 
variation with T. This result implies that the Sommerfeld expansion cannot be applied to 
the pole region of the sawtooth-type DOS. When the chemical potential lies at a pole in the 
DOS, the heat capacity can be shown to have a 8 dependence. To see this, we assume that 
there is a single sawtooth in the DOS. Let the sawtooth start from E = 0 and the chemical 
potential be also at E = 0. Then 1, becomes 

where Do is a normalized constant. Defining s, as 

the heat capacity in this case can be expressed as 
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exhibiting a square-root dependence on temperature. However, in reality, as shown in 
figure 3, the heat capacities in ID depend on temperature linearly in some temperature 
region and on f i  in the other regions since p also changes with temperature. 

In conclusion, we have found that the heat capacities in various intermediate dimensions 
vary with electron density in a similar fashion to the density of states at fixed temperatures. 
However, in the ID structure the heat capacity exhibits two peaks that result 60m a single 
asymmetric peak in the density of states. In this case, the heat capacity shows a .J?: 
dependence when the chemical potential lies near a pole of the density of states, while it 
varies almost linearly with temperature for the chemical potential located in the smooth 
region of the density of states. Further experimental tests are suggested to determine the 
dimensional and temperature variation of the heat capacity. 
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